502 research outputs found

    A dental revolution: The association between occlusion and chewing behaviour.

    Get PDF
    Dentistry is confronted with the functional and aesthetic consequences that result from an increased prevalence of misaligned and discrepant dental occlusal relations in modern industrialised societies. Previous studies have indicated that a reduction in jaw size in response to softer and more heavily processed foods during and following the Industrial Revolution (1,700 CE to present) was an important factor in increased levels of poor dental occlusion. The functional demands placed on the masticatory system play a crucial role in jaw ontogenetic development; however, the way in which chewing behaviours changed in response to the consumption of softer foods during this period remains poorly understood. Here we show that eating more heavily processed food has radically transformed occlusal power stroke kinematics. Results of virtual 3D analysis of the dental macrowear patterns of molars in 104 individuals dating to the Industrial Revolution (1,700–1,900 CE), and 130 of their medieval and early post-medieval antecedents (1,100–1,700 CE) revealed changes in masticatory behaviour that occurred during the early stages of the transition towards eating more heavily processed foods. The industrial-era groups examined chewed with a reduced transverse component of jaw movement. These results show a diminished sequence of occlusal contacts indicating that a dental revolution has taken place in modern times, involving a dramatic shift in the way in which teeth occlude and wear during mastication. Molar macrowear suggests a close connection between progressive changes in chewing since the industrialization of food production and an increase in the prevalence of poor dental occlusion in modern societies

    DeviceEditor visual biological CAD canvas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological Computer Aided Design (bioCAD) assists the <it>de novo </it>design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly.</p> <p>Results</p> <p>We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs.</p> <p>Conclusions</p> <p>DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.</p

    An integrated approach to supply chain risk analysis

    Get PDF
    Despite the increasing attention that supply chain risk management is receiving by both researchers and practitioners, companies still lack a risk culture. Moreover, risk management approaches are either too general or require pieces of information not regularly recorded by organisations. This work develops a risk identification and analysis methodology that integrates widely adopted supply chain and risk management tools. In particular, process analysis is performed by means of the standard framework provided by the Supply Chain Operations Reference Model, the risk identification and analysis tasks are accomplished by applying the Risk Breakdown Structure and the Risk Breakdown Matrix, and the effects of risk occurrence on activities are assessed by indicators that are already measured by companies in order to monitor their performances. In such a way, the framework contributes to increase companies' awareness and communication about risk, which are essential components of the management of modern supply chains. A base case has been developed by applying the proposed approach to a hypothetical manufacturing supply chain. An in-depth validation will be carried out to improve the methodology and further demonstrate its benefits and limitations. Future research will extend the framework to include the understanding of the multiple effects of risky events on different processe

    Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast

    Get PDF
    Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe. We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ~700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 46 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay to facilitate medium- to high-throughput chronological-lifespan studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond

    Choosing project risk management techniques. A theoretical framework

    Get PDF
    The pressure for increasing quality while reducing time and costs places particular emphasis on managing risk in projects. To this end, several models and techniques have been developed in literature and applied in practice, so that there is a strong need for clarifying when and how each of them should be used. At the same time, knowledge about risk management is becoming of paramount importance to effectively deal with the complexity of projects. However, communication and knowledge creation are not easy tasks, especially when dealing with uncertainty, because decision-making is often fragmented and a comprehensive perspective on the goals, opportunities, and threats of a project is missing. With the purpose of providing guidelines for the selection of risk techniques taking into account the most relevant aspects characterising the managerial and operational scenario of a project, a theoretical framework to classify these techniques is proposed. Based on a literature review of the criteria to categorise risk techniques, three dimensions are defined: the phase of the risk management process, the phase of the project life cycle, and the corporate maturity towards risk. The taxonomy is then applied to a wide selection of risk techniques according to their documented applications. This work helps to integrate the risk management and the knowledge management processes. Future research efforts will be directed towards refining the framework and testing it in multiple industrie

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44322/1/10597_2005_Article_BF01434986.pd

    Protein folding mediated by solvation: water expelling and formation of the hydrophobic core occurs after the structure collapse

    Full text link
    The interplay between structure-search of the native structure and desolvation in protein folding has been explored using a minimalist model. These results support a folding mechanism where most of the structural formation of the protein is achieved before water is expelled from the hydrophobic core. This view integrates water expulsion effects into the funnel energy landscape theory of protein folding. Comparisons to experimental results are shown for the SH3 protein. After the folding transition, a near-native intermediate with partially solvated hydrophobic core is found. This transition is followed by a final step that cooperatively squeezes out water molecules from the partially hydrated protein core.Comment: Proceedings of the National Academy of Science, 2002, Vol.99. 685-69

    BioPartsBuilder: a synthetic biology tool for combinatorial assembly of biological parts

    Get PDF
    Abstract Summary: Combinatorial assembly of DNA elements is an efficient method for building large-scale synthetic pathways from standardized, reusable components. These methods are particularly useful because they enable assembly of multiple DNA fragments in one reaction, at the cost of requiring that each fragment satisfies design constraints. We developed BioPartsBuilder as a biologist-friendly web tool to design biological parts that are compatible with DNA combinatorial assembly methods, such as Golden Gate and related methods. It retrieves biological sequences, enforces compliance with assembly design standards and provides a fabrication plan for each fragment. Availability and implementation: BioPartsBuilder is accessible at http://public.biopartsbuilder.org and an Amazon Web Services image is available from the AWS Market Place (AMI ID: ami-508acf38). Source code is released under the MIT license, and available for download at https://github.com/baderzone/biopartsbuilder. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.</jats:p

    Analysing the occlusal wear of the hominins of Sima de los Huesos

    Get PDF
    The occlusal surface of a tooth can provide evidence of past behaviour. In general terms, occlusal wear decreases through time, with industrialised modern humans having low occlusal wear because of the greater reliance upon processed foods. Neanderthals are thought to have exceptionally heavy occlusal wear, due to high mechanical loading from paramasticatory and masticatory behaviour. Here, we compare occlusal wear of hominins from Sima de los Huesos (SH, n=19) to Neanderthals (n=21) and modern humans (Middle Palaeolithic, n=5; Upper/ Early Epi Palaeolithic, n=26; Igloolik Inuit n=79; 19th-20th-century Madrilños individuals, CMH, n=14). The SH are thought to either be early Neanderthals or closely related to them, and share a number of cranial and dental traits with both Neanderthals (e.g. shovel-shaped incisors) and modern humans (e.g. frequent absence of the hypoconulid). Results deviate from the general and expected trend. The SH group had more wear on their upper I1 compared to Neanderthals (p=0.022), but not modern humans (p>0.05). We that SH upper P3 is more worn than all other groups (p potentially pointing to masticatory behavioural differences. The mandibular dentition of the SH was significantly more worn compared to Neanderthals (C-M2, p , Inuit (I1-M2, p (M2, p=0.030). It may be that SH were using their mandibular dentition less for paramasticatory activities or that the lower age range of the SH hominins used in the mandibular group meant that they generally had less wea
    corecore